

David Mills, Marie Antonette Juinio-Meñez, Nguyen Dinh Quang Duy, Christina Raison, Jon Altamirano and Woro Kusumaningtyas Perwitasari

Australian Centre for International Agricultural Research

This talk

- Outline ongoing research activities into sea cucumber culture in Southeast Asia
- Briefly highlight some results that will not be presented by others during this meeting
- Highlight new and ongoing research focus amongst some of these teams
- Outline bottlenecks and ongoing issues

Hatchery/nursery development

- Until recently focused squarely on *H. scabra*
- Early work conducted outside the region (James, Battaglene/Ramofafia and team) enthusiastically adopted in Asia (aided in particular by Rayner Pitt and Natacha Aguado's hatchery manual) and adapted to suit local needs
- Simplification and diversification are key to uptake of developed technology in coastal communities

Simplification

Use of a single algal species throughout vastly simplifies hatchery production

(RIA3/Duy)

Simplification (Hapa nets in ponds at RIA3)

Adaptability

Floating hapa systems developed at UP-MSI provide options where marine ponds are not available

Photo: C. Hair

SEA CUCUMBER HATCHERY (constructed: April 2010) (ACIAR & JIRCAS funds, RIA 3 collaboration)

- Larval Rearing Tanks, 10 units, 3-ton capacity
- Nursery Tanks, 4 units, 8-ton capacity
- Algal Tanks, 2 units, 3-ton capacity
- Space for experimental set-up (outdoor)

Sandfish seed production data (Apr-Nov 2010)

	Total Count ('000)			Stage 1	Surv (%)
	Day 0	Day 2	Day 8	Stage 1	(D0→S1)
21-Apr-10	816	630	200	17,275	2.12
22-Apr-10	96	78	40	1,551	1.62
28-Apr-10	1,435	1,443	700	1,306	0.09
28-Jul-10	2,069	1,980	1,590	3,944	0.19
10-Aug-10	4,800	3,720	1,335	20,939	0.44
17-Sep-10	616	570	278	11,005	1.79
17-Sep-10	1,630	1,530	270	6,719	0.41
4-Oct-10	858	600	435	2,774	0.32
13-Oct-10	3,600	1,200	870	20,227	0.56
10-Nov-10	3,600	1,935	1,380	2,178	0.06
TOTAL	19,520	13,686	7,098	87,918	
MEAN	1,952	1,369	710	8,792	0.76

2010 (Oct) Training course on seed production and nursery of sandfish *Holothuria* scabra

Bottlenecks

- Results do not always appear transferable, with modifications to local conditions necessary
 - Broodstock conditioning
 - Local water conditions and pathogens
- In many instances, survival remains extremely variable
- Use of live feed restricts uptake
- Broodstock availability is an issue in many places
- Space requirements for nursery/conditioning

Growout – a range of models

- Sea ranching
 - Community-based sea ranching in Philippines (UP-MSI, UP-Mindanao through ACIAR and National programs, SEAFDEC through GOJ-TF)
 - Mangrove-friendly systems (SEAFDEC /JIRCAS)
 - Cage system trials in Indonesia
- Pond culture
 - Monoculture systems (RIA3, SEAFDEC)
 - Rotational systems (RIA3/WorldFish/ACIAR)
 - Co-culture systems (RIA3, SEAFDEC, SGIC)
 - Not restocking/enhancement at this stage
 - Positive signs from UP-MSI (synchronous spawning), but a difficult research topic

Cage and pen trials

Lombok Marine Aquaculture Development Centre

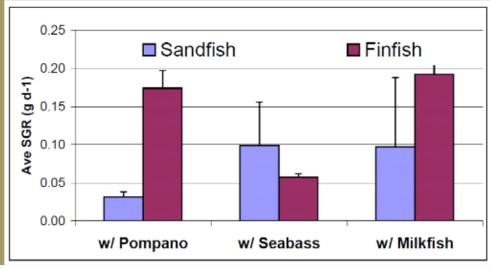
After 12 month:

- Survival Rate: 15.2 %
- Slow growth rate
- high mortality caused of disease and injuries
- Trials discontinued

Co-culture trials

- Attractive concept due to:
 - Bioremediation capacity
 - Niche availability
 - Benign nature of sea cucumbers
 - Some success with Babylon snail and seabass in Vietnam
 - Successes reported outside of SE Asia (e.g. Slater and Carton, A. mollis with green mussel in NZ; Various authors, A. japonicas with scallops, abalone, shrimp)
 - Shrimp an obvious choice due to pond usage
 - Past research not positive (e.g. Bell et al, stylirostirus)
 - Current research disastrous (vannamei in Vietnam)
- Rotation remains an option

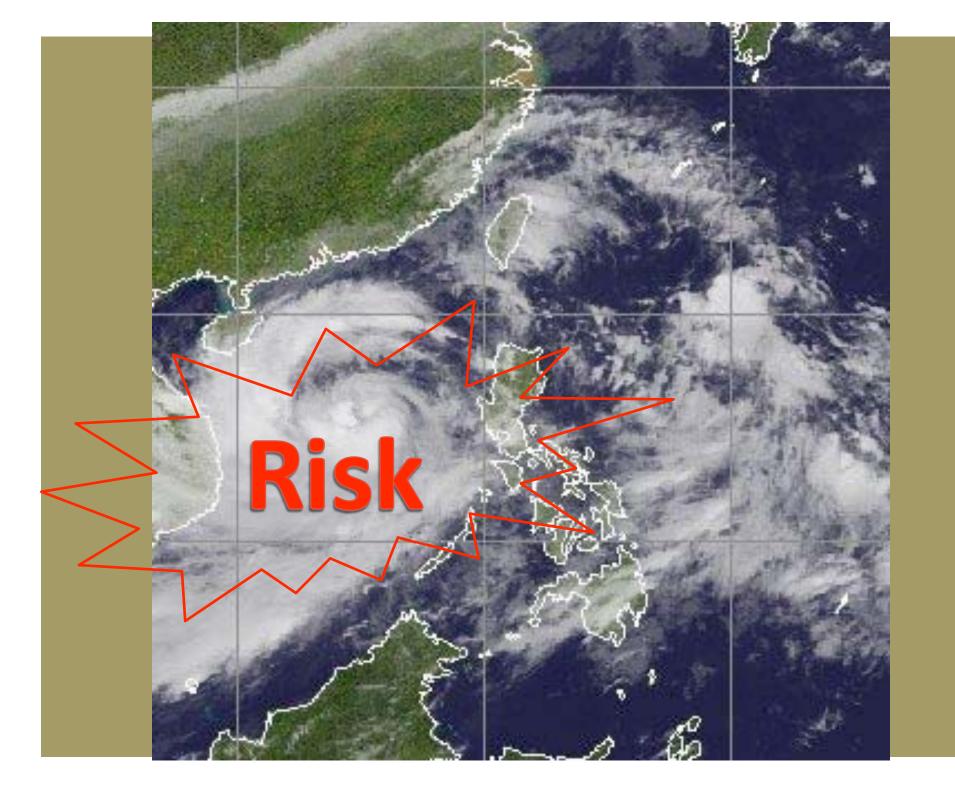
Co-culture trials - finfish



6 species tested: Milkfish, Seabass, Rabbitfish, Grouper, Pompano, Snapper

Rabbitfish, Grouper not compatible with sandfish

- •Growth compromised with Pompano
- Seabass may have suffered
- Milkfish OK
- Snapper ongoing



Bottlenecks & constraints

- Growth rates of around 1 year to (small) market size in ponds, and substantially longer in natural habitat
- Density dependence = space intensive
- Sediment and salinity requirements for ponds are restrictive (although not in central Vietnam)
- Mechanics of large-scale releases
- Low returns in some areas (Indonesia, Philippines) exacerbated by low yield (as low as 3%) after drying
- Sandfish appear quite susceptible to physical trauma and co-culture options may need to look at physical or temporal separation

Post-harvest issues

- Optimal processing methods
 - Some research by NFRDI (Philippines) but without productive outcomes to-date
 - Value-chain optimisation
 - Ongoing work WorldFish Centre and Philippines partners
 - Covering Philippines and Vietnam to-date
 - Inconsistent pricing between countries and regions shows that there is still major work to be done here

Future research areas

- Improving accessibility of technology:
 - Diversified systems (all players!)
 - Alternative nursery systems (MSI, JCU, UP-Min)
 - Stabilising production
 - broodstock conditioning (DAC/TSF. SGIC)
 - Detailed dietary/condition analysis (JCU/DAC/RIA3 ACIAR, SEAFDEC/JIRCAS)
- Species diversification: interest in S. horrens in particular FRI (Malaysia) and UP-MSI (Philippines)
 - Integration with fisheries governance (MSI, Philippines national program/ACIAR)

Future research directions cont'd

- Integrated production systems and enterprise structure (RIA 3/ACIAR Cam Ranh Bay)
- Technology scale-out:
 - Adaptation of shrimp hatcheries (RIA3, SEAFDEC)
 - Dispersed learning sites (MSI/ACIAR/SEAFDEC with institutional and NGO partners)
- Continued work on feasibility, institutional, regulative and economic aspects of community based ranching (MSI, UP-MIN, ACIAR, WorldFish/ JCU and partners, SEAFDEC/GOJ-TF, SGIC)

