

Davao, Mindanao,

# Phil. Projects funded by:

- 1. Phil. Government,
  Dept of Science &
  Technology, 2 years
- 2. ACIAR-Worldfish, 4 years







# Alsons Corp, Dumoy: Tilapia-Chanos ponds



# August 08. Hatchery 1: Dumoy











Cost = P100,000 = tanks, UV, structure, etc

### Feb 09, Hatchery 2: High Ponds, 80sqm



Cost = P500,000 = tanks, UV, structure, culture room, sleeping quarter, kitchen

### **Production Phases of Sandfish:**

- 1. Broodstock conditioning
  - 2. Broodstock induction
    - 3. Larval rearing
      - 4. Nursery for juveniles
        - 5. Grow-out to >500gm

### 1. Broodstock conditioning



#### **Conventional**

In tanks in the hatchery



- feeding
- · aeration
- flow rhrough
- labor

### 2. Broodstock induction

| Conventional              | Mindanao                 |
|---------------------------|--------------------------|
| Temperature and Spirulina | As is<br>(99% effective) |







## 3. Larval rearing: Feeding regime

#### **Conventional**

2-4 species of algal food



Alson's Phytolab



2 jars from Alson's per week







# 4. Nursery for juveniles

#### **Conventional**

In settlement tanks with benthic diatoms



### 4a. Nursery: First stage

#### **Conventional**

In raceways till 3-5gm

800L Tank = P10,000



#### **Mindanao**

Move to hapas at 3-5mm stage

Hapa Cost = P20,000



- flew-throughlabor

### Survival rates of juveniles

| Batch Density | Initial                | % Survival Estimate |       |
|---------------|------------------------|---------------------|-------|
|               | From gastrula to 3-5mm | 1 month in hapas    |       |
| 08 Aug        | 375,000                | 0.64                | 75-95 |
| Sept          | 300,000                | 0.80                | 55-96 |
| 09 May        | 225,000                | 1.07                | 90-99 |
| 10 Feb        | 300,000                | 1.50                | 88-95 |
| Jun           | 360,000                | 1.67                | 84-94 |
| Oct           | 360,000                | 2.01                | 85-92 |

Annual Production = 5000 juvs/qtr x 4x = 29,000 juvs



### 4b. Nursery: Second stage (sand conditioning)

#### **Conventional**

In raceways till 6-10 gm



### **Initial Capital:**

Work Space Equipment/Materials:

- a. Water System
  - 1. UV light
  - 2. filters
  - 3. holding tanks
- b. Rearing Tanks
- c. Culture Room
  - 1. Airconditioner
  - 2. Refrigerator
- d. Aeration system

Nursery

floats

hapa (mosquito net)

**Pond** 

water pump water pipes

Sea ranch

### **Monthly Expenses**

#### Staff:

- a. hatchery-algal room
- b. field

**Electricity & Water** 

- a. culture room
- b. hatchery
- c. Pond

**Algal Culture** 

# 5. Grow-out to >500gm (?)

| Conventional     | Mindanao                                                   |
|------------------|------------------------------------------------------------|
| 1. In open water | 1. In open water                                           |
| 2. In ponds      | <ul><li>2. In a pond</li><li>3. In water channel</li></ul> |



# Growth experiment in sea water channel



### **Production Phases:**

1. Broodstock conditioning

Sea water channel

2. Broodstock induction

Temp-Spirulina

3. Larval rearing

Mono-species food

4. Nursery for juveniles

Hapas in the channel

5. Grow-out to >500gm?

Sea water channel









